Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Technol ; 44(24): 3656-3666, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35441572

RESUMO

Bioremediation of sediment organic pollution has been intensely investigated, but the degradation of complex organic compounds, pesticide residues, and polychlorinated biphenyls (PCBs) remains poorly studied. In this study, sediments were collected from Zhanjiang Mangrove Reserve and inoculated in an inorganic salt medium using only biphenyl (BP) and PCBs as the carbon sources to obtain a PCB-degrading strain. A gram-negative bacterium that metabolized PCBs was isolated and identified as Klebsiella Lw3 by 16S rDNA phylogenetic analysis. Genomic sequencing showed that this bacterium possessed genes related to BP/PCB degradation, and its GC content was 58.2%; we identified 3326 cellular pathways. Gas chromatography-mass spectrometry was employed to test the PCB degrading ability; the results showed that the strain had a good degradation effect on PCB3 at concentrations of 5, 10, 20, 40, and 60 mg/L and that the final degradation rate was higher than 97% after 96 h. Interestingly, this strain showed good biodegradability of PCBs despite having no classical PCB degradation pathway, providing a new direction for Klebsiella research with practical significance for in situ bioremediation of PCB contamination. Overall, this study provides valuable insights into the genetic structure of PCB-degrading strains as well as eco-friendly and low-cost PCB degradation and lays a foundation for the discovery of new degradation pathways.


Assuntos
Bifenilos Policlorados , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Filogenia , Biodegradação Ambiental , Genes Bacterianos , Genômica
2.
Front Nutr ; 9: 929925, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911097

RESUMO

Polychlorinated biphenyls (PCBs) are widely distributed environmental toxicants, whose biological toxicity is magnified step by step through the transmission of the food chain. However, there is little research about the effect of PCBs on intestinal epithelial barrier function. In this experiment, the effects of PCB exposure on the intestines of zebrafish were evaluated. Animals were exposed to Aroclor 1254 (5 µg/L, 10 µg/L, 15 µg/L). After 21 days, the changes in histology, enzyme biomarkers, intestinal microorganisms, and metabolomics were detected. The inflammation and oxidative stress in the intestines of zebrafish were observed. Additionally, there were significant changes in intestinal microbiota and tissue metabolism, most of which were associated with oxidative stress, inflammation, and lipid metabolism. The results showed that PCBs exposure resulted in intestinal inflammation and oxidative stress in zebrafish.Moreover, intestinal metabolites and intestinal microflora of zebrafish were also disturbed. This study verified that exposure can lead to intestinal damage and changes in intestinal metabolic capacity and microorganisms, enlightening the consequences of PCB exposure.

3.
Curr Microbiol ; 79(4): 97, 2022 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-35150323

RESUMO

The bottom mud of mangroves contains numerous microbial groups that play an important role in the main ecological functions of the mangrove ecosystem. The diversity and functional and environmental factors related to microbial communities, in terms of the assembly process and in environmental adaptation of the abundance and rare bacterial communities in the mangrove ecosystem, have not been fully explored. We used 16S high-throughput sequencing and operational taxonomic unit analysis to compare the diversity and composition of bacterial communities in different tidal zones in the sediments of the Zhanjiang Gaoqiao Mangrove Nature Reserve, compare the ecological adaptation thresholds and phylogenetic signals of bacterial communities under different environmental gradients, and examine the factors affecting the composition of the bacterial community. The diversity of microbial species and structure and function of the mangrove sediments were affected by the environment, showing the trend: mid tide zone > climax zone > low tide zone. Organic matter content, oxygen content, pH, and total phosphorus were identified as important environmental factors determining the functional diversity of bacterial communities and survival, while pH influences species evolution. The abundant taxa showed a wider response threshold and stronger phylogenetic signals of ecological preference across environmental gradients compared to rare taxa. The abundant bacterial groups have broader environmental adaptability than rare bacterial groups, and different environmental factors affect different communities and functions in the mangrove ecological environment. These results elucidate the mechanism underlying the generation and maintenance of bacterial diversity in response to global environmental changes.


Assuntos
Microbiota , Áreas Alagadas , Bactérias/genética , Sedimentos Geológicos , Fósforo , Filogenia
4.
Bull Environ Contam Toxicol ; 108(5): 867-877, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35039887

RESUMO

Microplastics are easily consumed by marine animals, thereby entering the food chain and endangering animal health. However, there are few studies focusing on the effects of microplastics in mangrove sediments on microbial communities. In order to study the influence of microplastics on microorganisms, microplastics and microorganisms were extracted from Zhanjiang (Guangdong Province, China) mangrove sediments and analyzed. The results showed that there were differences in Shannon and Simpson indices of the microbial community in microplastics (p < 0.05), and there were also differences between JG30_KF_CM45 and Natranaerovirga at the genus level, indicating that microplastics may affect the diversity and composition of microorganisms in sediments. In addition, FAPROTAX function prediction analysis showed that microplastics may affect the nitrification of microbial communities. The results from this study indicate that microplastics affected the diversity and richness of microorganisms in mangrove sediments, which provides an experimental basis for the relationship between microplastics and microorganisms.


Assuntos
Microbiota , Microplásticos , Animais , China , Sedimentos Geológicos , Nitrificação , Plásticos/toxicidade , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...